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INTRODUCTION

One is familiar with the terms Spectral Resolution and Spectral Decom­
position. In this paper we discuss important problems and recent results on
(1) Spectral Factorization, (2) Spectral Synthesis, (3) Spectral Decay, and
(4) Spectral Estimation.

We have been recently drawn to these subjects principally from con­
siderations in Signal Analysis but they are also important in Geophysics
and Stochastic Time Series, and originally caught our attention from
questions in Quatum Mechanics and Statistical Mechanics. Beyond a
motivating comment or two here and there, we will not go into the
applications, as each would require a more extensive treatment. Suffice it to
say that, for example, in the multidimensional Signal Analysis, marvelous
problems and questions abound.

We have lumped together all four subjects 1-4, to be treated in the
following sections of the same number, under the single term Spectral
Approximation. All four subjects are concerned with approximating a
function from limited spectral data. Two further subjects of similar interest
in spectral approximation would have been (5) Spectral Sampling and
(6) Spectral Optimization.

An excellent survey of recent mathematical problems and results for
what we call Spectral Sampling has been given by Butzer [3] with mul­
tidimensional problems discussed by Splettstosser [34]. There are some
connections between Spectral Estimation and Spectral Sampling, as will be
mentioned in Section 4, but the emphases are different, the former prin­
cipally posed in the frequency domain, the latter usually in the time
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domain. By Spectral Optimization we mean both optimization techniques
needed in Spectral Estimation (see Section 4) and problems of optimal
spectral parameters needed in multidimensional numerical relaxation
techniques. These will be treated in separate works.

As we have tried to indicate above, the flavor of this paper will be certain
mathematical aspects of these problems, especially toward their setting in
two and three dimensions, where most have not been resolved.

1. SPECTRAL FACTORIZAnON

Spectral factorization comes in many guises. Its main use in applications
is to generate a unique minimum phase wavelet function in the time
domain from a given spectrum in the frequency domain. It is thus an
inverse problem in Spectral Approximation. It is quite crucial in feedback
filtering theory, the theory of prediction, and seismic prospecting.

Mathematically it corresponds to factoring an arbitrary Hardy space
function h (in the frequency domain) as

h = io, (1.1 )

where i is an inner function and ° is an outer function. This may be done
for H 2 (disc) or H 2 + upper half plane). A good treatment of the one
dimensional case may be found in Dym and McKean [5], where one may
find a proof of the factorization in one dimension. The outer factor of an
arbitrary element h in H2 + is given by the formula

(')_ l-foo s}.+ Ilnlho(s)1 d° It - exp . 1 2 1 s,
1T.l -00 S-A S +

(1.2 )

where ho denotes the boundary values of h on the real line. The inner factor
may be thought of as a type of Blaschke product which absorbs all upper
half plane zeros from h. In this way the difficulty in advancing to a theory
of Spectral Factorization in two and three dimensions by going via the
theory of functions of two and three complex variables is evident. Although
some Hardy space theory for the latter exists, we found that an inner-outer
factorization theory did not.

Accordingly we have in Goodrich and Gustafson [7] (see also [6,8,9])
an inner-outer factorization for two and three dimensions. It relies on a
group representation approach; while we may not know enough about
functions of several complex variables, we do know the Euclidean two and
three space groups and their representations. This approach goes back to
the paper [15] and in effect extends Theorem 1 there to higher dimensions.
An initial motivation for [7] was to attempt to extend all three
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Theorems 1,2,3 of [15] to two and three space dimensions. Some dis­
cussion of the higher dimensional situation of Theorems 2 and 3 will be
found in Section 3.

A word of clarification here: by two and three dimensions we are refer­
ring to the domain (sometimes called parameter) space. For a process this
is explified by the representation V v , where v=(t j ,t2 ) or v=(X 1,X2 ,X3 ).

Multidimensional ranges are, from our point of view, much easier and have
been treated in the stochastic process literature and elsewhere for many
years now.

To go beyond [6-9], let us recall:

DEFINITION 1.1. A function tf; E !l;(R2
) is an outer function if

sp{ v tf;(V - w) Iw = (x, y), x ~ 0, y ~ o} = 2i(- 00] x ( - 00, 0]). (1.3)

DEFINITION 1.2. A function tf; E !l;(R2
) is a weak outer function if

sp { v tf; (v - w) Iw = (x, y), x ~ 0, - 00 < y < 00 }

= 2 2(( - 00,0] x (- 00,(0»

and

sp{ vtf;(v-w)lw=(x,y), -oo<x<oo,y~o}

=22((-00 oo)x(-oo,O]).

(1.4 )

Here the symbol v denotes inverse Fourier transform and /\ will denote
the Fourier transform. Definitions 1.1 and 1.2 are motivated by considering
the third quadrant in the plane in the role of negative time or as the basis
for, e.g., two dimensional picture prediction. Other geometries could be
considered.

Suppose now that

(i) tf; has support in the third quadrant, and

(ii) sp{V(x.y)tf;l(x, y)ER2
} = 2 2(R 2

),

(1.5)

where V(x.yltf; denotes the regular representation V(x.yltf; = tf;( t - x, s - y).

DEFINITION 1.3.

DEFINITION 1.4.

Es = sp{ V(x,y)tf; Ix ~ S, Y arbitrary}.

F, = sp{ V(x. y}tf; I y ~ t, x arbitrary}.

(1.6)

(1.7)



DEFINITION 1.5.

Also assume that
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nR(E,) = {O} = nR(F,).
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(1.8 )

(1.9)

Condition (1.9), where R denotes the range of the operator involved, is a
necessary condition for an 2 2 analysis and may be called "emptiness of the
separate infinitely remote pasts." The conditions on fjJ in (1.5) may be seen
from the one dimensional theory to be natural necessary conditions on fjJ:
(i) corresponds to the left half line support that the inverse Fourier trans­
form fjJ = v 0 of an outer function will have, and (ii) corresponds to the
needed cyclicity of 0 = ~.

We could not show that just (1.5) and (1.9) were sufficient for ~ to be an
outer function. By assuming also

(1.10)

for all (s, t) in two space R 2
, we were able to show that there exists an

"inner function" g, Igl = 1 a.e., such that

o=g~ (1.11)

is outer. The inner function g is unique except for a scalar multiple of
absolute value one. The same result for weaker outer functions was
obtained with (1.10) replaced by the weaker assumption

(1.12)

The geometry of the support of fjJ plays a vital role. The characteristic
function X-1010 = X( [ -1,0] x [ -1,0]) of the right unit square adjacent to
the origin in the third quadrant is the inverse transform of an outer
function. The tilted 45° third quadrant square X45 yields a weak outer
function. To work out a full set of such functions would appear to be a for­
midable task but would yield factorization theorems for all such functions.

We believe that the commutativity assumption (1.11) is redundant in this
theory.

LEMMA 1.1. Given fjJ cyclic, that is, satisfying (1.5)(ii), if the fac­
torization

~ = i· 0 (1.13)

with Iii = 1 a.e. and v 0 satisfying (1.4) holds, then (1.12) is automatically
satisfied.
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Proof First we note that E>F, = F,E, for all sand t or for no sand t.
Observe that

U(O,-lo)FIO U(O,IO) = Fo

U( _>o,o)E,o U(>o,O) = Eo

U(o,,)EoU(O,-IO) = Eo

U(>o,o)FoU(->o.O) = Fo

(1.14)

for all So, to. Then (1.13) follows easily from the characterization of a self
adjoint projection by its range. From

F'oE,·o = U(O, '0) FoU(O, --'0) U(>o,O)Eo U( ->0,0)

= U(O,IO) U(>o,O) FoEo U(O,-(o) U( -50,0) (1.15)

we see that FloEso is unitarily equivalent to FoEo for any to, So'
The proof of the lemma is then completed by noting three unitary

equivalences. First, l/f and ~ are unitarily equivalent by Fourier transform,
multiplication by i -I gives 0, and then inverse Fourier transforms maps the
projections Eo and Fo back to multiplications by the characteristic
functions of the left and lower half planes, respectively. The last two mul­
tiplication operators commute, hence so do all E, and Fr.

LEMMA 1.2. When l/f(x, y) = f(x) g(y), where J and g are one dimen­
sional outer, then ~ is outer.

Proof In this case f spans completely to the left, g spans completely
down, E> corresponds to multiplication by X( ( - 00, s] x ( - 00, 00 )), F,
corresponds to multiplication by X(( - co, co) x ( - 00, t]), and hence
EsF( = F,E>.

Of interest then toward our conjecture are the cases in which t{J(x, y) =
l/f(y, x). An example is X45 above, for which X45 is weak outer. One wonders
whether all such cyclic symmetric third quadrant support t{J should be
weak outer, or in any case what if any additional conditions would be in
order.

To that end, one can establish the following facts.

DEFINITION 1.6. Sf(x, y) = f( y, x) for all f in ;l'2( R 2).

LEMMA 1.3. (i) SEoS=Fo; (ii) FoEo=SEoFoS; (iii) S intertwines Eo
and Fo: EoS=SFo; (iv) Eo and Fo commute iff (SEO)2 is selfadjoint.

Proof (i) Let (XI' YI) be given with YI ~O. Then S maps
t{J(x-X1'Y-YI) into t{J(y-X1,X-YI)=t{J(X-YI,y-xd. Eo maps this



SPECTRAL APPROXIMAnON 277

function to itself. Then S maps this function to t/f(Y-Yl,x-xd=
t/f(x-Xl> Y- yd. Thus on a dense subset of the range of Fo we have
Fo= SEoS. This then easily implies SEoS = Fo. Part (ii) follows from (i).
(iii) S-I= =S=S (iv) The relation is obvious. We note an interesting
operator theoretic twist here. SEo is not self adjoint, not even normal, yet is
a square root of a self adjoint operator whenever Eo and Fo commute.

Let Y' = {II Sf = f}, i.e., Y' is the vector space of all symmetric
functions. Also let d Y' = {II Sf = - f}, i.e., d Y' is the vector space of all
anti-symmetric functions.

LEMMA 1.4. (i) S(EoFo+ FoEo) S = EoFo+ FoEo.

(ii) S(EoFo - FoEo) = -EoFo+ FoEo·

(iii) EoFo + FoEo maps!/' into!/' and d!/' into dY'.

(iv) EoFo - FoEo maps!/' into d!/' and d!/' into Y'.

(v) EoFo=FoEo if and only if EoFo maps Y' into!/' and dY' into
d!/'.

Proof We see that (i) and (ii) are immediate consequences of (ii) in
Lemma 3. Then (iii) and (iv) follow from (i) and (ii) and the fact that every
.P2 function can be uniquely decomposed into the sum of a symmetric and
anti-symmetric function.

To prove (v) note that if EoFo maps!/' to Y' and d Y' to d!/' then from
(ii) of Lemmas 3 EoFo and FoEo agree on !/' and d!/' and hence agree
on .P2 •

Finally, if EoFo = FoEo then EoFo+ FoEo= 2EoFo and EoFo must map
Y' to !/' and d Y' to d Y' by (iii) above.

In [32, Chap. 19] Rudin discusses the conjecture that inner functions do
not exist on the unit ball for more than one dimension, and draws a num­
ber of conclusions depending on the truth or falseness of the conjecture. As
Rudin point out [32, Preface]:

The fact that they [such open problems] are still unsolved shows quite clearly that
we have barely begun to understand what really goes on in this area of analysis....

It turns out that a number of investigations shortly thereafter found the
existence of inner functions: f of norm Ilfllx = 1 such that

If* I = 1 almost everywhere, f* the radial limit. (1.16)

See, for example, L~w [25] for a discussion of those results.
These higher dimensional inner functions are extremely oscillatory near

the boundary, and it was known that there are YfX functions for which
inner-outer factorization fails on each higher dimensional ball. From
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attempts to get some sort of factorization came the notion of internal
functions: f of norm Ilflloo = 1 such that

h, h-I bounded analytic, IfI~ Ihl ~ I everywhere => h is constant.

(1.17)

The advantages of this notion is that no radial limits enter into the
definition, inner functions being known to have extremely oscillatory
behavior near the boundary. By also redefining the notion of outer to
external, factorization results have been obtained; see Rubel [28].

There is also an earlier version of such functions, called interior functions;
see Rubel and Shields [29], for which factorization in higher dimensions
also failed. An interior function f was

fin :?eX), 5(f) is w* closed. (1.18)

Here we have used 5(f) to denote the principal ideal generated by f
Thus there are now four notions of "inner function" in higher dimen­

sions, along with some factorization result, pro or con, for each. For lack
of a better name we will continue to call our version "inner functions" with
the understanding that our main focus is factorized rather than some other
analytic property.

Because our approach is functional analytic whereas that for internal
functions is complex function analytic, it would be interesting to compare
the two theories and the properties of the inner and outer functions of each.

2. SPECTRAL SYNTHESIS

The celebrated closure theorem of N. Wiener [38] states that the non­
vanishing of the Fourier transform of an integrable function IjJ is necessary
and sufficient for the translates of IjJ to span

(2.1 )

More generally R I can be replaced by any nondiscrete locally compact
abelian group G with integration taken with respect to a Haar measure on
the group. Then the necessary and sufficient condition for denseness of the
linear combinations of the translates of IjJ is that ~ does not vanish on the
character group Gof G.

If IjJ is in "poo(G) then in the w* topology of "poo(G), that is, the .,pI
topology on .,poo, the closure of the span of translates of ¢ contains at least
one character. Such characters may be called the spectrum of 1jJ. The
problem of spectral synthesis as originally formulated was to consider any
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nonvanishing bounded measurable function ¢J and determine if its span
contains enough characters such that their span contains ¢J itself:

(2.2)

From this problem there evolved a number of results and a rather extensive
literature. See Hewitt and Ross [17] (Chapter 10 there is devoted entirely
to questions of spectral synthesis), and see also Graham and McGehee
[13].

Within this general framework, and as one of the early papers on the
subject, Beurling [1,2] established harmonic spectral synthesis for weighted
.PI spaces: for every 1E .Poo(R) there exists a trigonometric polynomial
p(x) = Lk = I IY.k eitkx

, with all tk in the spectrum off, such that II (I - p) will
is arbitrarily small. This result holds for any nonnegative even nonincreas­
ing weight WE.PI (R). We quote Hewitt and Ross [17]:

The papers Beurling [1] and [2] remain something of a mystery, and a thorough
exegesis of their ideas for general locally compact Abelian groups would be most
welcome....

Our approach to Spectral Factorization may thus be viewed as harmonic
spectral synthesis for weighted .P2 spaces on a semigroup S or just on a
geometric substructure S of a locally compact Abelian group: for every
1 E .P2(S) when does there exist a weighted trigonometric polynomial
P(S)=Lk=llY.kei(rk,S)~(s), with all rk in S, such that II! - pll2 is arbitarily
small? The notion of spectrum here is left imprecise due to the fact that
2;(S) is not generally an algebra and also because the set S may no longer
be a group. That is, we just allow r access to all values in the set S. So far
in our investigations we have only considered for specific S, quadrants,
octants, or hyperspaces, e.g., semigroups.

Because the closure of the subspace generated by all translates of a set of
one or more functions ¢JI,"" ¢In in ~(R) is the same as the closed ideal
generated by that set of functions, the problem of spectral synthesis may in
that case be cast in terms of ideals: when is a closed ideal the intersection of
the regular maximal ideals which contain it? From this point of view, ~(X)
is therefore seen to be the most natural (easiest) setting for resolution of
spectral synthesis questions, by use of the Gelfand-Naimark-Segal con­
struction and the correspondence of closed ideals to closed subsets of X.
Much of the abstract work on spectral synthesis seems influenced by this
point of view. Going to ~ (G), one still has an algebra and ideals, but the
question of spectral synthesis becomes more difficult and the understanding
of it did not really begin until L. Schwartz gave his counter-example [33]
for 'p 1(R 3

). We will describe this example in another context in the next
section.

In going to .P2(S) one loses algebraic structure in both the functional
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and underlying spaces. But one gains the inherent dualities of 2 2 spaces
and the general strength and applicability of least-squares approximation
methods.

Consider, for example, the above spectral synthesis problems modified
by replacing the set of all translates of an 2 1 function by the set of trans­
lates {tPy lYE SG}, where SG is a semi-group in the group. H we try to
apply the theory of commutative Banach algebras to this problem, we
immediately run into difficulties. To illustrate these difficulties, let us take
the group to be R, the real numbers, and let SG be the set of all non­
negative numbers. In this case and in the problems above, we are most
interested in understanding which elements of 2 1 are in sp{tP v IY :? O} The
spectral synthesis problems in 2 00 then can be viewed as a dual problem
similar to the one under consideration above.

LEMMA 2.1.

sp{tPyl y:? O} = sp {flf(X) = tOO tP(x- y) h(y)dy for some hE 2 1
}.

Proof Let V+ = {jlf(x) = SO" tP(x - y) h(y) dy for some hE 2 1
}. We

show a continuous linear functional F on 2 1 vanishes on V+ if and only if
F vanishes on V = {tP v I y :? O}. Then by the Hahn-Banach theorem this
implies sp V = sp V+. -

Let F(f)=S':'oof(x) q(x) dx for some q in 2°C. HfE V+ then F(f)=
SO"h(Y)(Se:'ootP(x-y)q(x)dx)dy. H F vanishes on V+ then 0=
So h(y) Se:'oo tP(x - y) q(x) dx for all h in 2 1

. Thus Se:' 00 tP(x - y) q(x) dx = 0
almost everywhere on (0, (0). But this integral is a continuous function in y
since q is in 2 00

• So fe:'oo tP(x- y) q(x) dx= 0 for all y in (0,00). Thus F
vanishes on V. Conversely, if F vanishes on V one can reverse the above
steps to show F vanishes on V+.

Another way of stating this result is that

sp{ tP y I y:? O} = sp{ tP * hi h E 2 1 and the support of h ~ (0, ex) n.
It is very easy to see sp{ tPv lyE R} = sp{ tP * hi h E 2 1

}. This last set is an
ideal in 2 1 under the convolution product. Thus if we are considering all
translates of tP we may apply the theory of commutative Banach algebras
to obtain information about this ideal.

In the case where we are only considering sp{ tPy I y:? O}, it will not in
general be an ideal. This is so because f * h may not have support in
[0, 00) when h has support in [0, ex)) and no restriction is made on the
support off It would seem that restricting the set of translates to a semi­
group, that is, trying to solve the problem with less spectral data, greatly
reduces the possibility of algebraic (Banach algebra) techniques for the
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problem. However, in the special case where one also knows that the sup­
port of rjJ is contained in [0, 00) then the set sp{ rjJ * hi h E2' [0, oo)} forms
an ideal in 2'[0,00), where the convolution product is defined in the
usual way, i.e., rjJ * h(x) = J,:,oo rjJ(x - y) h(y) dy, remembering that rjJ and h
have supports in [0, 00). The above set is an ideal because if h has compact
support then support (f * h) £:: support (f) + support (h) £:: [0, 00) because
[0,00) is a semi-group (see, e.g., Hormander [19, Theorem 1.6J). Also, iff
and h are in 2 1[0, 00) then if we pick a sequence {h n } in 2' with each hn

having compact support in (0, 00) and {h n } -4 h in 2' then {J * hn } -4

f * h in 2 1 and so the support of f * h is contained in [0, 00 ) and the set is
an ideal in 2 1[0, 00).

The maximal ideal space of the Banach algebra 2 1(0, 00) is computed to
be the functionals a(f) = J~ f(s) X(s) ds, where X(s, + S2) = X(SI)' X(S2) for
s, and S2~0, and X is in 2 00 (see, e.g., Loomis [24, p.73]). Because
X(s) = eas for some complex a, in order that X be in 2 00 [0, 00) we must
have Re a::::;; O. Thus the maximal ideal space of the algebra is the left half
complex plane including the imaginary axis.

2'(0, 00) is reminiscent of Beuding's algebra (see [24, p. 180] for a dis­
cussion). The above argument holds out the possibility of studying the
translates {rjJ v Iy ~ O} of an 2 I function whose support is contained in the
right half line by using the theory of ideals for the algebra 2' [0, 00).

In higher dimensions we would then consider translates of a function
{cPy lyE SG} for a function with the support of cP contained in a semi-group
SG. Motivated by both the above discussion (and, incidentally, the theory
of picture processing) one would study this problem with the semi-group of
half-planes and quadrants. One could also consider the dual problem of
considering the translates {cPy lyE SG} of an 2 00 function cP whose Fourier
transform has support in SG. One would hope these analogies to the
known literature of spectral synthesis would yield insight into spectral syn­
thesis problems and Tauberian theorems on semi-groups.

3. SPECTRAL DECAY

As mentioned in Section 1 above, the extension of the following two
theorems (Theorems 2 and 3, respectively of Gustafson and Misra [15 J) to
higher (e.g., two and three) dimensions should be considered.

THEOREM. (SSKKKPW). A stationary process x(t) is regular if and
only if its spectral density f(J..) satisfies the condition

640f4~!3.J

foo Inf(J..) d'
-112 It>-oo

-00 + A
(3.1 )
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THEOREM (Unstable Particle). A unitary evolution V/ is that of a
regular stationary process if and only if it admits a one dimensional decaying
subspace without regeneration.

A word about the theorems. Theorem (SSKKKPW) is rather famous
and is found variously under the names Szego, Smirov, Kolmolgorov,
Krein, Krylov, and Paley, Wiener. Theorem 1 of [15] provided a new
short proof. Theorem (Unstable Particle) grew out of mathematical
questions about models for meson decay. Both are related to the condition
(3.1), which for efficiency we will just call the Szego condition (see Sezgo
[36J ).

The Szego condition for the unit ball becomes

r lnf(8) > -ClJ.
-n;

(3.2)

A positive 2 2( - n, n) function f( 8) is the absolute value of the boundary
values of an H 2 function if and only if (3.2) is satisfied. The condition (3.2)
may also be seen to be equivalent to the existence of an 2 2

( - n, n)
functionf(e ili

) with If(e ili
) I= f(8) and with all negative Fourier coefficients

vanishing. In signal filtering theory f( 8) is often taken as a prescribed gain
IB(8)1 and the vanishing negative Fourier coefficients signify causality.

We do not have two and three dimensional versions of the two theorems
above and we are not aware of any. Both would depend on a higher dimen­
sional Szego condition (3.1). Any such condition would help in
understanding higher dimensional outer functions.

There was a great amount of work done in the thirties and fourties on
decay rates of a function f and its Fourier transform 1 Weiner made the
important remark (see Hardy [16J):

a pair of transforms f and g cannot both be very small.

In other words, f and g =J cannot both be very small at infinity. Hardy
[16] responded with

THEOREM (Hardy and Weiner). If

f(t) = O(ltl me-,a
2

) at It I~ CJJ

and

(3.3 )

as P.I ~ 00, (3.4 )

m a nonnegative integer, ex and f3 positive and satisfying

(3.5)
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then 1(J.) = Pm(J.) e- 1u2 where Pm(J.) is a polynomial of degree less than or
equal to m.

In particular, if !Y. = f3 =!. then both f and 1 have the same form, and
when m = 0 , both are constant multiples of the Gaussian et2j2

We now wish to move from this Theorem in two ways. First, we want to
consider smallness in the sense of the Szego condition. Secondly we want to
discuss the importance of "look-alike" f and J

Our interest in Spectral Decay in the sense of Szego came not only from
[15] but from a conjecture concerning irreversibility and K-flows in
Statistical Mechanics (see Goodrich, Gustafson, and Misra [11]).

Specifically, the conjecture was that the following could not hold for a
function f E 2'2( - ct.), ct.) ):

(i) f( t) real and nonnegative,

(") foo lnf(t) d
II --2 t> -ct.),

-00 l+t

(iii) f(A.) real and even,

(. ) foo Inll(A)1 d'1 _
IV 12 II. > ct.).

-00 1+11.

(3.6)

Note that f real ~1even and 1real ~ f even but this additional infor­
mation is only incidental to the question: can a spectral density f and its
transform III both satisfy the Szego condition? Although at first our
intuition favored the conjecture (viz. the remark of Wiener), it is false.

LEMMA 3.1. The smallness conditions on f and1of (3.6) can be satisfied
by "look-alike" f andJ

Proof The idea is to ignore phase. Let

and

f(t) = g(t) + e-- Itl .

Then because

f(t) = g(t) + i(t)

we have lnf(t»ln g(t) and

foo In f(t} > r" In g(? > -ct.).

-oc1+t _ool+t

(3.7)

(3.8 )

(3.9)
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Also note that f is L 2 and J= g+ v g= f so that (iii) and (iv) are also
satisfied.

COROLLARY 3.2. If f is a Szego spectral derivative, i.e., satisfies (3.1),
then

(i) so does f + gfor any nonnegative g, and

(ii) so does P for any 0 < p < 00.
(3.1 0)

Thus from any Szego spectral density there are many more. Correspondingly,
one regular stationary stochastic process x( t) generates a large related family
of such processes.

From Lemma 3.1 one is led to ask: does the failure of a spectral density f
to satisfy the Szego condition imply that its transform Jmust satisfy it (viz.
the Wiener remark)? Again "look-alike" f and Jgive a counterexample.

LEMMA 3.3. Szego largeness conditions on f and J, i.e., simultaneous
diverge in (3.6)(ii) and (iv), can be satisfied.

Proof Take f = e - (2; then J= (const) e - }2;4.

Thus the Szego condition governs Spectral Decay not just at infinity but
everywhere on the real axis: f(t) cannot be too small. Thinking off(t) as
the spectral density, i.e., in the case when it is the derivative of a dis­
tribution function for a stochastic process or the derivative d(E(A) ¢J, ¢J) of
a spectral family, Szego Spectral Decay is that of a lower bound rather
than upper bound on decay, not only at infinity but everywhere. This lower
bound on smallness at infinity (and everywhere) can be simultaneously
satisfied by a function f and J

As a second instance of the importance of look-alike f and J, we recall
the Uncertainty Principle in signal theory: f and Jcannot both be of short
duration. Specifically, in one dimension, if f(t) = O(t- 1

/
2) at It[-> 00 and if

IX, /3, where

1X
2= f~oo t2If(tWdt!f~oo If(tWdt,

/32 = f~oo A2IJ(A)12dA!f~oo IJ(AWdA,

(3.11 )

measure the durations off, then the Uncertainty Principle states that

1X/3?:~.

Sharpness of this estimate occurs only at Gaussians f(t) = e- Yt2
•

(3.12)
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The relation of the Uncertainty Principle to the Hardy-Wiener theorem
is clear. Only the weight functions differ. Sharpness comes at a "look-alike"
function. Probably there is a similar uncertainty principle for the Szego
functional (weight (1 + t2

) - I, In f). Other measures of duration are used in
signal processing time-bandwidth considerations, yielding other f, J spec­
tral growth and decay limitations.

A third use of "look-alike" f and Jmay be found in the counterexample
of L. Schwartz [33] to Spectral Synthesis in 2 1 , Let S2 denote the unit
sphere in three-space, let f denote the closed ideal of functions f in 2 1(R

3
)

such that !(S2) = 0, let .~ 0 denote functions in .~ for which also
iJ!/iJY1(S2) = 0, and let ..Po denote the closure of fo. Then f o is a translation
invariant subspace of 2 1(R

3
) for which spectral synthesis fails. This is

demonstrated by exhibiting a bounded linear functional which separates '~o

and f Letting

x'f=f (iJ!/iJYI)da
52

it can be checked that x'(fo) = 0, x'(f) # 0, where

Note that

(3.13 )

(3.14 )

that is, f and Jare "look-alike" functions. Duality in f, J serves to measure
nonduality in 2';. We formalize this observation as follows.

PROPOSITION 3.4. "Look-alike" functions f and J serve as limits in Spec­
tral Decay statements.

It would seem (perhaps this has been done somewhere) that a study of
the functional dependence

!(),) = af(b), + c) (3.15 )

of transforms on important groups such as Rnand en would be useful. One
could allow a, b, c the two classes of being constant or being functions of X
Group effects are already indicated in the R 1 scaling law

af(at)+-+ J(A/a). (3.16)
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Some further known examples of "look-alike" functions in one dimension
are

f = Itl- I
/
2

,

f = (sgn t)jtl- 1
/
2

,

j = (2n)I/2jAI- I
/2

j = i(sgn A)(2n )1/2A-1/2;

f = e- z /
2

, j = (nz- I )1/2e -)o2/4Z

where z = a + ib, z > 0, Re~ > 0;

f = cos(at2), j = (na- I )I/2 COs(A2/4a - n/4);

f = e _/2/2HerA21/2t), j = (2n) 1/2(ite -4
2/2Hern(2 1/2)0).

As mentioned above, all such functions should be characterized.

4. SPECTRAL ESTIMATION

(301 7)

In many applications of Spectral Approximation (by our definition, the
extracting of some approximation or other information from limited spec­
tral data), one does not even know the exact spectra data itself. That is,
one must first estimate it. We will take this as a general description of the
problem of Spectral Estimation.

An important instance of this is power spectrum estimation. Given some
incomplete time series data x(tn), what frequencies are present in it and
more importantly what frequencies were present in the complete original
source x(t)? If we approximate x(t) by f(t) in the time domain, thenj(A) in
the frequency domain would hopefully indicate those frequencies present.
For this reason the amplitude Ij(A)j is called the power spectrum. A rather
periodic incoming signal will show up in the frequency domain as a power
spectrum concentrated on just those participant incoming frequencies and
dropping to zero beyond them, whereas a turbulent incoming signal will
transform to a continuous spectrum extending into high frequencies.

A main goal of this last section is to establish basic and intimate connec­
tions between Spectral Estimation and the other three aspects of Spectral
Approximation brought forth in this paper. Indeed let us go even further
and first tie in, albeit briefly, the other two aspects of Spectral
Approximation that we mentioned in the Introduction.

The Sampling Theorem of Spectral Sampling asserts that if the incoming
signal f(t) is band-limited, namely,

Ij(A)1 =0 for IAI~(J, (4.1 )
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then f( t) can be reconstructed exactly from its values sampled at the times
±nn/(J by the representation

f(t)= f sin (J(t-nn/(J)f(nn).
n~ -00 (J(t - nn/(J) (J

(4.2)

Note that to so reconstructf(t) you need to sample over an infinite time
duration. In practice you have sampling only over a finite time interval
[ - T, T]. From the Spectral Decay limitations of Section 3 you have no
right to limit the data to this interval, transform it, and then expect J( Je) to
represent the power spectrum. Not only will power extend beyond the
band IJeI ~ (J but also the effect of this dispersion on the spectrum within
the band is a priori unclear. This is the basis of the problem of the
estimation of power spectrum. The difficulties are compounded by
statistical uncertainties in the sampled data. To effectively remove the latter
would require averaging over a great many realizations whereas in practice
you have only one (or a few) realizations x(t). From this has grown a large
literature on spectral estimators. For example, for the discrete case the
exact representation

'" 1 OC'

f(Je) = 2n I e-iAnC(n)
n = -CJ::;

of J(A) in terms of the covariances C(n) yields the estimate

(4.3 )

(4.4 )

where w(n) is a so-called lag window vanishing for all n ~ some N, and
where CAn) is a maximal likelihood (or other) estimate of the unknown
true Fourier coefficients C(n). This type of estimate goes back to Tukey
[37]. The problem is that no matter how large N is, even though Je(A) con­
verges in the mean to f(A), JAA) has a large variance, greater than, for
example, the square of the expected value of Je(A). To reduce this variance
one must smooth the power spectrum estimator, thereby giving up
resolution for reliability. Such smoothings will be limited by the uncer­
tainty principles of Section 3.

The uncertainty principle (see Section 3, Spectral Decay) says that if x(t)
contains most of its energy in (- T, T), then its transform f(A) contains
most of its energy in the band IAI > canst/To If we assume that in fact
x(t) = 0 outside (- T, T), then indeed the best frequency resolution will be
const/T. But if instead we assume x(t) continues or may be continued out­
side ( - T, T) in a good way, then we can increase the frequency resolution.
Therefore we would like to extrapolate xU) to the left and right of its sam-
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pIing interval in a way which maximizes the frequency resolution. A good
way to do this that has been developed by Levinson, Burg, and others (e.g.,
see Lang and McClellan [21,22]) is: in place of estimating the
autocorrelations rk directly from the sampled data x(tn), instead estimate a
minimum phase prediction error filter directly from the data. This
corresponds to a Spectral Factorization.

Recall the Spectral Estimation problem: estimate the power spectrum
f( A) of a given stationary random process x( t). Here f()") = f( t), where r( t)
is the autocorrelation function

r(t) = x(t) * x( - t) = fco x(t + s) x(s) ds.
-·00

(4.5)

If we assume that a realization x(t) is available only over an interval
( - T, T), a common estimator of the autocorrelation is

1 fT-lfl/2
rT(t) = 2T I I x(s + t12) x(s - t12) ds.

- t -T+/fI/2
(4.6)

This estimator is symmetric, unbiased, and converges to r(t) as T - w. But
its Fourier transform f(t), as a would-be approximation to the power spec­
trum f(A), converges to a random variable whose variance equals f 2(A).
There is a long history of this problem, starting with the above (essentially,
the so-called periodogram) approach, evolving through an introduction of
a number of windowing and Fast Fourier Transform techniques, and now
employing a number of smoothed estimators of r(t). The latter idea is
based on smoothing r(t) so that fewer frequencies are present, which yields
a sharper power spectrum. An excellent reference for more information is
Koopmans [20].

One can now relate Spectral Estimation and Spectral Factorization as
follows.

PROPOSITION 4.1. Spectral Factorization gives Spectral Estimation in one
dimension.

Proof Spectral Factorization can be formulated as follows: given a
function r(t) whose transform f(A) is nonnegative, find a causal function
x( t) such that

r(t) = x(t) * x( - t) = Jco x(t + s) x(s) ds.
- co

(4.7)

The comparison of (4.5) with (4.7) above is intentional. Here causal is
taken to the right: x( t) = 0 for all t:;;; O. If moreover r(t) is of limited time
duration, e.g., if it is from a finite sampling interval (- T, T), then fac-
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torization also can be obtained with x(t) = 0 for t ~ T. This argument uses
the Fejer-Riesz and Akhiezer-Krein moment theorems; see Papoulis [26].
The connection to Spectral Factorization as we have formulated it in this
paper follows from the fact that x( t) will be outer and hence of minimum
phase.

In practice one usually will have available from measurement only a dis­
crete set of correlation (also called autocorrelation; note that they are con­
volutions) values'k> k = 0, ±,..., ±m. Because we want to also discuss the
multidimensional case here, let the 'k values be known for k in ,.1 =
{O, ±b 1 , ••• , ibm}, i.e., ,.1 is a symmetric set of vectors about the origin in
R n

. We also assume that the power spectrumf(A) has compact support K,
and that f(A) ~ 0.

Let us make a connection to Spectral Synthesis now before we go on. In
Spectral Synthesis if one knows all translates of a function then under ideal
circumstances one can reconstruct the function from the characters con­
tained in that span. Here we do not have the whole span but we do have
some convolutions, namely they 'k' and from this we want a best possible
reconstruction of the function.

Remembering that

, b =f f()·) e - jk bdk
K

(4.8 )

for all b in the sampling set ,.1, one way in practice to estimate the
unknown x( t) is to settle just for an estimation of its power spectrum f( A).
If this is successful, then one at least can determine those frequencies
present in the signal x(t). Spectral Estimation in practice concentrates on
this latter partial problem.

One important method is known as the maximum entropy method. In
this method one finds an approximate power spectrum according to the
criteria

max f In f(A) dA
f~O K

(4.9)

where f satisfies the constraints (4.8). In one dimension the solution takes
form

f(A) = Ijp(A), (4.10)

where p().) is a positive trigonometric polynomial.
Optimization theories clearly become important in such methods. The

choices of objective functional, algorithm, and solution properties are
somewhat unclear in higher dimensions and are investigated in Goodrich
and Gustafson [10].
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The question as to when a finite sequence of convolution vectors
{rblbEL1} can be represented as rb=SKeiHj(k)dk for some j?;O has
itself an interesting history. If we consider instead the more general
question as to when rb = Seibokdlt(k) for some measure It?; 0, we find that
we have made connection to an important classical extension problem, in
one dimension, called the trigonometric extension problem [4, 14, 21, 30,
35].

For one dimension, A = {O, ±1,..., ±m}, K = [ - n, n], the solution, as
is well known, is that the corresponding correlation matrix R

[

ro

R= r_ 1rO

r -m

(4.11 )

be positive definite, i.e., the function rb is a positive definite function on A.
In higher dimensions the positive definiteness of r on A is not sufficient

to imply the existence of a measure It. This was shown by Rudin [30], and
also by Calderon and Papinsky [4]. The reason for this rests in the fact
that in higher dimensions not every positive polynomial is the sum of the
squares of polynomials. The crucial fact about polynomials was established
by Hilbert [18], and was used by Rudin, and by Calderon and Pepinsky
to establish their results. The latter imply the existence of a positive definite
function with no extension, Le., no 1t?;0 exists such that rb= SKeibokdlt(x)
for 15 E A, for certain A and K. Recently, Lang [23] has constructed an
explicit example of a positive definite r that has no extension. This example
in turn makes strong use of polynomial constructed by Robinson [27]
which is not the sum of squares of polynomials. The existence question
does not arise in one dimension since in one dimension every positive mth
degree trigonometric polynomial can be factored as the square magnitude
of an mth degree trigonometric polynomial, according to the Fejer-Riesz
theorem.

Thus it is necessary to give conditions for extendibility for higher dimen­
sional r. These are known; first we need some definitions. Note that if r is
extendible then r(b)= SKe)kobdlt(k) for all bEA and some measure /1. Then
r(b) has 2m + I components and r( -b) = ;=(b). We think of (r(b» as a
2m + 1 vector in R 2m + I. Let p be any vector in R 2m + 1, then we associate a
A-polynomial P(k) = LbELl p(b) e- jkb , where p( -b) = p(b). Such a vector p
is called positive if P?;°on K. A scalar product is defined between all
correlation vectors r and polynomials p by

(r, p) = L: ;=(b) p(b).
bELl

(4.12 )
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Then for r = (r(<5)) = (Sk ejk bdJ.L(k)) one has (r, p) = Sk p(k) dJ.L(k). Let E be
the set of all extendible vectors, eo its interior. One then has the following
characterization of the set of extendible vectors in R 2

m + 1.

THEOREM [4,21,30]. The vector is extendible if and only if (r, p)~O
for all p ~ O.

Returning to the earlier question as to when rb= Sk ejkbf(k) dk for some
f~O we have the result of Lang and McClellan [21].

THEOREM [21]. If every neighborhood of every point in K has positive /1­

measure, then

(1) Iff is uniformly bounded away from zero over K, then r = (r( 6)) =
(Skf(k) ejkbdJ.L(k)) is in eo.

(2) If r E eo, then r = (r( <5)) = (S f(k) ejk ' bdJ.L(k)) for some continuous
strictly positive function f

The interior eo of E and the boundary 8E of E have the simple charac­
terizations

eo= {rEE/(r, p»O whenever p~Oand p i= O}.

8E={rEEI(r,p)=0 forsome p~Oandp i= O}.
(4.13 )

It is thus natural to ask in higher dimensions when the r(6) =
SK (1jP(k)) eib'kdk for some positive trigonometric polynomial PU) on K.
Recall that this is the form of the maximum entropy solution in one dimen­
sion.

THEOREM [22]. Every r E EO can be written as r(6) =
SK(ejbjp(k)) dJ.L(k) for some positive trigonometric polynomial p if and only
if SK(1jp(k)) dJ.L(k) = 00 for all p such that p(k) = 0 for some k E K.

Woods [39] showed that every rEEo may be represented as r(<5)=
SK(ljp(k)) eib 'kdk for all 6 E A for K = [ - n, n]2 and A consisting of vectors
with integral vectors with integral components and including the standard
coordinate vectors. However, if K = [ - n, nr and A as above with n ~ 3
then the above theorem can be used to prove the existence of an r in eo
that cannot be written in the above form. This example is due to Bruce R.
Musicus; see [22]. This is an existence argument and as far as we know no
construction of an explicit r has been given. Such a construction would be
of interest.

Thus in higher dimensions we observe some breakdown of the maximum
entropy method. Recently Goodrich and Steinhardt [12] investigated a dif­
ferent solution for these examples.
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THEOREM [12]. Let K = [ -n, n]n, n ~ 1, .1 = {a, ±b 1 , ••• , ±bn}, and
take r E ItJ. Then there exists a unique trigonometric polynomial P such that
r(b) = fKmax(P(k), 0) e ik ' bdk for bE .1.

This solution is also known to exist in the other examples given by Lang
and McClellan and is a finite parameterization fat ItJ with the number of
unknowns (the coefficients of P) equal to the number of constraints (the
number of elements of .1). One can also show the existence of solutions of
the form max(P(k), O)l/p -I for 1 < P < 00. This approach, as in the
maximum entropy method, is one of Spectral Optimization and depends
on minimizing the functional

I(f) = f If(k)IPdk
K

over allf~O on K and such that r(6) =fKf(k) eik·bdk for a1l6E.1. See
[12] and [to] for further analytical and numerical studies.
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